Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator
نویسنده
چکیده
In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x force nonlinear oscillator but it is also useful for many other nonlinear problems. Keywords—Approximate solutions, Harmonic balance method, Nonlinear oscillator, Perturbation.
منابع مشابه
A Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force
This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...
متن کاملSolution of Nonlinear Hardening and Softening type Oscillators by Adomian’s Decomposition Method
A type of nonlinearity in vibrational engineering systems emerges when the restoring force is a nonlinear function of displacement. The derivative of this function is known as stiffness. If the stiffness increases by increasing the value of displacement from the equilibrium position, then the system is known as hardening type oscillator and if the stiffness decreases by increasing the value of ...
متن کاملNumerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
متن کاملSolution of strongly nonlinear oscillator problem arising in Plasma Physics with Newton Harmonic Balance Method
In this paper, Newton Harmonic Balance Method (NHBM) is applied to obtain the analytical solution for an electron beam injected into a plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. Periodic solution is analytically verified and consequently the relation between the Natural Frequency and the amplitude is obtained in an ana...
متن کاملStability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method
In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...
متن کامل